If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-7y-7=0
a = 2; b = -7; c = -7;
Δ = b2-4ac
Δ = -72-4·2·(-7)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{105}}{2*2}=\frac{7-\sqrt{105}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{105}}{2*2}=\frac{7+\sqrt{105}}{4} $
| -13c-9c-18c=14 | | 3k-2k+3k-3k=8 | | 15k+6k-19k=10 | | -15p+18p-9p+-p+20p=-13 | | 3(27^x+27^(-x))=10 | | 5y=−3 | | 4z+2z=18 | | x(x+2)×2+(2x+2)×1.5=246 | | 15k-14k=8 | | 8a+10=2(5-4a | | 2x^-x-55=0 | | 5x-2x+7-x=0 | | 8j+14=-2(4j-7 | | j-92/5=1 | | 19+5w=49 | | 7g-16=61 | | 3=w+1/7 | | 15(w-6)+12w=333 | | y+8/4=5 | | 7(n-85)=49 | | 8(b+6)=96 | | 19=f/3+15 | | 11(v+4)-3v=4(2v+1)-13 | | 4(x-6)=5(x+1) | | 6x3-6x=3 | | 17=y/4+16 | | 40-12=4(x-5) | | 19+3y-6=14y-11-5y | | -2(2s-4)-8=-2(5s+4)-2 | | x4-9x2=0 | | (5×x)-12=8 | | (3x-5)/(x-2)+7=0 |